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SUMMARY

& T

The-pwesent paper reports on a detailed analysis of the buovant rise

of fireballs in the earth's atmosphere. Formulae for the rise velocity
and height, and the density, mass, radius and expansion velocity of
the fireball are given. The computation of fireball temperature 1s
discussed in detail; no explicit expression could be given because of
the nature of the problem. The assumptions and simplifications on
which the analysis rests are summarized in a separate section. In
order to facilitate applications, a complete numerical example is
given, Frequently used quantities are calculated and presented in
graphical and tabular form.
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INTRODUCTION

The solution of the problem of physically describing low-altitude
fireballs is best undertaken in three steps. These are: the ra liative
growth of the fireball; the establishment of pressure equilibrium be-
tween the fireball and the ambient atmosphere; the buoyant rise of
the fireball. Each of the steps is dominated by different ghysical
phenomena and consequently by a different set of equaticns, Break-
ing the problem into distinct steps results therefore in uniformity of
approach throughout eacl. step. A further important simgplification
is the possibility of suitably averaging the detailed results of one
step in order to cbtain better manageable starting values for the
next step. The mentioned steps are discussed in general in the
following. The problem of buoyant fireball rise is treated in detail.
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GENERAL DISCUSSION

1. Radiative Fireball Growth

The first step is the analysis cf the 1nitial radiative grcowth cf the
fireball. Immediately after deposition of the X-ray energy the fire-
ball grows by reradiaticn. The process is described by the radiation
diffusion equation. The impertant quantitv appearing in this equation
is the Rosseland mean free path, For a semiguantitative understand-
ing of the radiation process it is necessary to kncw that the Resseliand
mean free path decreases with temperature to a certain minimum at
a temperature T, and rthen increases again. {The Rcsseland mean
free path also decreases with density. This is important for the es-
tablishment of an upper height limit to which the radiatively growing
fireball is described by the radiation diffusicn equation, ) Plotting
fireball temperature T ncrmalized to the temperature T; at the
center cf the fireball witk respect to radial distance r ncormalized

to fireball radius ry;, one obtains the schematic drawing shown in
Figure 1. (The distance {rcm the fireball center at which the tem-
perature is close to ambient temperature T, is def' nedas ry.; Ini-
tially the temperature Tr in the center of the fireball is high so that
the Rosseland mean free path is long and a large portion of the fire-
ball is isothermal, At the fireball edge the temperature drops so
that the Rosseland mean free path decreases and the firebzll grows
in size by radiation diffision., The temperature T at the center
drops as the radius ry increases and more air is engulfed into the

fireball,

initially, when T is kigh, most of the radiation energy is transport-
ed at temperatures much excesding T, that is above that tempera-
ture for which the mean free path of radiation is a minimum. (This
can be seen most clearly by considering that for large Ty, T¢/T: is
well down on the T/T¢, r/rf curve. Most of the radiation transgort
takes place to the left of this point, at temperatures exceeding T¢. !
Orly a smszll fraction of the total radiation energyv escapes therefore
te iarge distances. The fireball grows and ¢ocls by radiative expan-
sion at the fireball edge where the temperature drops and the Rosse-
lanid mean free path decreases. As the temperaiure at the center of
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tre firzball dreps, maore of the radiative energy is transported at
tempera‘ures below Tg and can escape to large distances. (Agals,
this ¢=n be seen most easily by considering that for iew Ty, T¢/Tf
is up onthe T/Ty, r/re curve and a large portion “f the radiation
trarsport occars at temperatures below T¢.! An increasing frac.
ticn f the vora] radiation energy escapes to large distances. Th's
ts cne of two processes terminating radiative fireball growth.

Tre cther precess is hydrodynamic expansior. of the fireball, Durirg
‘khe time of rediative fireball growth the high pressure withia the fire-
tzll ac-elerates the air particles away from the ceater of the burst.
Once tke speed cf hydrodynamic expansicn, which is nearly equal to
the spe=d ¢f scund within the fireball, becocmes larger than that of
radiative exgpansior, the radiative expansicn phase is terminated.

A sireable fraction of the fireball's heat centent mav be transferred
into blast energy and carzied away te large d stances. Hydrodynamic
expansicn competes therefere with radiative energ, transport to large
distances in terminating the radiative growth <f the fireball,

The computation of radiative fireball grewth may be cne~dimensional,
that is sphericaily symmetric, as long as the firebali radius is small
compared to z scale height. Otherwise = iwo-dimensionzl model
skould be used. The significant results of the computarion zre fire-
ball radius and firebali temperature at the end of the radiative phase.

I case the radiztive expznsion phase 1s terminated by hvdrodinamic
expansion, the correspinding density, temperature and velocity dis-
tributicns witkin the {Trebzll would be of :nteresi for a more detz’led
aralyeis of the problem.

2, Estzbliskment of Pressure Equilibrium

Tte second step 1n the physical description of 12w -zltitude firebalis
involves the analys;is of the processes taking place between the erd
of the radiative expansion phase and the establisiment of an appraoxi-
mate pressure equilibrium beiwesn the fireball and the ambient at

m~2sphere,

m ocase hvdredynamic expansion ended the radiative expansion phase,
fireball cotling by both radiation and hydrodynamic expansion must
be conszidered from the beginning, This is i‘kely to be the case at
low altitudes where the mear free path of rudiaticn is small, It i
importan® to realize that radiative cocling depends strongly upon
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density., The latter depends upon hydrodynamic expansion which in
turrn is a functicn of temperature. This interacticn between ccoling
by radiaticn, ccoling by the generaticn of 2 blast wave, and cccling

by expansicn of the fireball gzs makes the sectrd step a difficulr one.
Tt must be axted that the hydrodynamic expansicn ‘tseif may canse the
format.cn ¢f a new [ireball by shock heating the ambient air to high
temperatures. This firebali will also ¢ocl by radiation and expa=nsion,
It is coavenlent to reter to the firebzll preduced by radiative exgpan-
sicn as the "iireball" proper. Tre fireball produced by the hydrod, -
nemic shock is best referred to as the "shock-teatad regiza. "

Ia czce the end of the radiative expansion phase was marked by the
transm.ssion of a significant fracticn of the radiaticn erergy ‘o large
distances, firekall cooling by radiation is computed first and hsdre-
dynamic expancsion s taken intc accoant cnce it becomes sigrificant.
Since the mean free path of rad.avion increases with decreasing den-
sity, the terminaticn of the radiative phase by radiative cocling i3
likely to ccuzur at high altitudes. A rough measure for the fime until
signif.cant hvdrodynamic moticn sets in is cbtained as that time which
the rarefaction wave nezds to travel one-tenth of the fireball radius
‘nward. By thew, thirty percent of the fireball mass are affected by

hydrodiramic motion,

During the time of firebali expansion to pressure equilibrium, a
"pressure force" {see Reference 1) zcts upon the fireball, Thisfrrce
i3 a result of the exponential density distribation in the atmosphere
whick causes the pressure at the boftom of the is *thermal fireball to
excexd that at i*s tcp. The resulring forve will drive porticns of the
firebali upward until pressure equilibriam with the ambient atmosphertre
has be=n attained. The acceleration due to the pressure forces drops
from z value of g(R;T¢/R,T,} at the beginning of the expznsion phase
to zera at its end. {(The subscripts F refer to the fireball and the
suabscripts A tc che amblent atmoesphere. R is tke specific gascon-
stant.} At altiudes and yields where the fireball radii become com-
parable fo abcut three-tenths of an atmcsgheric sczle height, the total
mass of amblert alx above the burst is comgparable or small compared
tc the mass of a’r within the fireball and the '"pressure force" will be
able to drive the fireball into a ballistic trajectcrv (sez Reference 1).
This mears that the fireball speed will be affected only insignificantly
by the entrainment of ambient 2ir and by drag and mainly be slowed
down by gravitational deceleraticrn, In addition, the time until pres-
sure eguailibrium between fireball and ambiert atmosphere is estab-
lished increases with height for the same ;ield, sc that the "pressvre

force" acts longer at kigh altitudes thus achieving higher speeds.
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The "pressure force'" is not the >nly force acting upen the fireball,
As scon as the fireball density drops below the ambient value, a
bucvancy focrce appears. This force in contrast to the "pressure
force" corrinues to act after pressure equilibrium has been estab-
lished. The acceleration of the fireball due te buovancy increases
frem zero at the beginning to 2g at the end of the expansion phase.
Thereafter it deciines, but persists until the fireball density has
become equal to the ambient density. At low altitudes, the large
mass of air above the fireball prevents the fireball from following
a ballistic trajectory, Its speed attained through the "pressure
force" will rapidly be slowed down by entrainmenrt and drag. The
speed attained through the buoyancy force on the other hand per-
sists for a long time and carzies the fireball to higher altitudes.
Ever sc, the "pressure force'" may still influence the initial por-
ticn of the fireba’l rise significantiy.

A rne-dimensicnal, spherically symmetric calculation of the second
step will shew many of its essential features. In particular, it will
give average velues of fireball radius, temperature and density., A
one-dimensional model may be satisfactory for small ratios of fire-
ball radius to scale height. It will not bring out the effect of the
pressure force and of buoyant effects. Fcr significant ratios of
fireball radius to scale height, a two-dimensional model is prefer-
able. It will vield rise speeds due to the pressure as well as the
buovancy force.

3. Bucyant Rise

The third step in the physical description of low-altitude fireballs
for those cases where it is more significant than rise due to the
"pressure force'' is the analysis of the buoyant rise. At the termi-
nation cf the fireball's expansion tc ambient pressure the fireball
will be rising with some speed, which to a certain extent is due to
the "pressure force" and to a certain extenrt to the buoyancy force.

It will be shown in a later section that the rise speed is small enough
so that the speed of fireball expansion is below the scund speed with-
in the fireball. This allows the fireball to remain in pressure equi-
librium with the ambient atmosphere.

Iritizily, cocling by radiation dominates. Eventually, entrainment
of ambient air becomes important. The change in fireball tempera-
ture and density due to radiation and entrainment and also due to ex-
pansion alters the radiative fireball properties, This interaction
beiwesn the various processes makes the analysis difficult. As the
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fireball temperature decreases by radiation its density increases
and the buoyancy force diminishes,

Once radiative cooling is less important a mechanism for dissipa-
tion of the fireball's heat content than entrainment of ambient air,
the latter will decrease the fireball's average temperature, in-
crease its average density and thus reduce the buoyancy force. The
details of the process wiil depend upon the degree of mixing and
heat exchange occurring between the original hot fireball gas, the
already entrained and heated ambient air and the newly entrained
air. The fireball will eventually consist of a mixture of gases each
at a different temperature and at a different density, but all atneaily
equal pressure. This non-uniformity and the exponential pressure
and density distribution (see Reference 1) within the fireball will set
up internal motions. Some of these will be random in nature be-
cause they are caused by the particular way in which portions of air
are entrained, mixed and heated. They are the cause of turbulence
within the fireball. Other motions, most likely those due to the ex-
ponential character of the atmosphere, will be independent of en-
trainment. They may cause predictable effects. The formation of
the torus or smoke ring (see Reference 1) seems to be the most im-
portant example of this kind of motion.

Expansion during buoyant rise will also decrease fireball tempera-
ture and increase its density. It can be shown that this effect will
eventually be more important than mass entrainment. It always
controls the final phase of buoyant fireball rise.

In the folldwing, a simplified analysis of the mass entrainment and
expansion controlled phase of buoyant fireball rise is presented.
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ANALYSIS

4. Assumptions and Simplifications for the Aralysis of
Entrainment and Expansion-Controlled Buoyant Rise

In the present repecrt, a muach simplified solution for the buoyant
fireball rise is presented. Its basic assumptions and simplifica-

tions are:

It i5 assumed that the fireball is of spherical shape throughout the
duration of the buoyant rise. I¢s physical description will be in
terms of average values of density, pressure and temperature.
The assumption of a spherical shape is not realistic in view of the
fact that all bucyantly-rising fireballs eventually change from a
spherical into a torcidal shape. The calculation of only average
values may justify the assumption ¢f a spherical shape.

The aerodynamic drag of the rising fireball is assumed to be pro-
portional to its cross-sectional area, the square of its speed, the
density of the ambient atmosphere and a constant drag coefficient,
For the numerical example presented, the drag coefficient of a
solid sphere is assumed. While it is difficult to assess the appli-
cability of the drag coefiicient of a sphere, the general assumption
of aerodynamic drag sezms to be reasonable. All bucyantly-rising
fireballs are much smaller than an atmospheric scale height. They
do therefore move in the atmosphere under the same conditions as
those bodies do, for which aerodynamic drag has been found to apply
in moving through a gas of uniform density. It also turns out that
the drag due to the continucus entrainment of ambient air leads,
under assumptions which are intuitively correct, to an expression
analogous to aerodynamic drag. Thus the assumption that con-
ventional aerodynamic drag acts on buoyantly-rising fireballs
seems justified.

It is assumed that the speed of expansion of the rising {ireball is
small compared to the sound spezd in the fireball. This will allow
pressure equilibrium between the fireball and the ambient atmos-
phere. This assumption will be true for all possible cases of interest,
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It is assumed that the rate of mass entrainment of ambient air can
be described by the product of the surface area of the fireball, its
speed relative to the atmosphere, the ambient density and a constant
mass entrainment factor, It is further assumed that the entrained
air is attached to the fireball at the ambient density. This implies
that the entrained air is instantaneously accelerated to the speed of
the fireball.

The analysis starts when the initial acceleration of the fireball, due
to the "pressure force'" and the buoyancy force, has given way to a
quasi-stationary behavior of the rise speed. Also, fireball cooling
by radiation must have become less important than cooling by en-
trainment or cooling by expansion in order for the analysis to be
applicable. It is difficult to give a criterion for the time interval
between the burst and the time when radiation cooling becomes un-
important. On the other hand, it is fairly easy to give the time
interval after which a quasi-stationary rise speed is attained. For
small fireballs, that is, for fireballs in which the rise speed due to
the "pressure force'" is small compared to that due to the buoyant
force, the fireball will rise with significant speed once the above
mentioned quasi-stationary behavior of rise speed has been attained.
In general, entrainment and, consequently, cooling by entrainment
may be expected to start once the fireball has acquired its quasi-
stationary rise speed. The fireball acceleration time is therefore
the minimum time after which the analysis will be applicable.

It is assumed that no heat is exchanged between the fireball and the
entrained air. This assumption is unrealistic, since actually the
entrained air removes heat from the fireball. This increases the
density of the hot fireball gas and decreases the density of the en-
trained air. The assumption that no heat exchange between the hot
fireball gas and the entrained air takes place is therfore similar
to averaging between the truly increasing fireball density and truly
decreasing density of the entrained air. An assessment of the va-
lidity of this procedure must await a more detailed study of the

heat exchange process.

It is furthermore assumed that both fireball gas and entrained air
change their temperature adiabatically as they rise and expand.

This is 2 perfectly tenable procedure, since adiabatic expansion
actually takes place at times when energy loss by radiation has be-
come unimportant. At late times, when the fireball has cooled suf-
ficiently, the fireball gas starts to behave thermodynamically like
ambient air and can be described by a constant ratio of specific heats.

* See page 49.
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It is assumed that the fireball radius and its average density and

temperature are known at the time when the analysis starts to be-
come applicable. A numerical value for the radius is much more
easily guessed at than values for average density and temperature.

5. The Equation of Motion of the Buoyant Rise

It is convenient to start the analysis of buoyant rise by considering
the equation of motion of the buoyantly accelerated fireball, The

equation of motion is

d [M(1+0,/2%;) v]/dt = (p,=Br) Mg/Be - Ca0sAV3/2 . (5.1)

M stands for the fireball mass; p,, pr for the ambient, average
fireball density; v for the velocity of the fireball; g for the gravi-
tational acceleration; C; for drag coefficient and A for cross-

sectional area of the fireball.

It is easy to see the physical significance of the terms., An excep-
tion is the inclusion of the additive term p,/2p; into the first paren-
thesis on the left. This term takes the force into account which
appears when the accelerated fireball displaces the ambient atmos-
phere (see Appendix 1). The expression for the drag is the conven-
tional one for the motion of a solid sphere in a gas. The drag coef-
ficient is a function of the Reynolds number and depends upon rise
speed, ambient density and fireball radius (see Appendix 2). The
entrainment of ambient air into the fireball is included by differen-
tiating the momentum rather than the speed with respect to time.
Carrying out the differentiations and multiplying by 2p;/Mp, leads,
after rearrangement of terms, to

ZBF v dM dv v dpA v dBF EF chF.AV2
iy — =t = - === = gl - |- —— . (5.2)
py \IM dt dt! p, dt of dt D4 M

Any change in fireball volume V is due to two causes. One cause
is the expansion of the rising fireball in equilibrium with the instant-
aneous ambient pressure. For the case that no ambient air is en-
trained into the fireball, its mass is conserved, and it follows that
any change in its volume V due to expansion is given by

d-Tr dpA) (5. 3)

av,, = V(-_————
ex TF D)

10
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This equation follows from the equation of state of the expanding fire-
ball which is in pressure equilibrium with the ambient atmosphere

p,V = MR; T (5. 4)

by differentiation. The ambient pressure is denoted by p,, the
average fireball temperature is ?F, the specific gas constant of
the average fireball gas is _PZF. The quantities TF and EF are de-
fined in Appendix 3. Use of the adiabatic equation of state for the
average fireball gas

1-7

T, P Vi = const , {5.5)

for substitution of d?;/-"l—} in Equation (5. 3) leads to

VvV dpa
dVy = = =— — . 5.6
ox = (5. 6)

The exponent Y; in the adiabatic equation of state is defined in Ap-
pendix 4.

The change in ambient pressure can be described by the change in
ambient density

doA/OA o~ —dh/Hsp N (5. 7)

and the change in ambient temperature

dTA/TA e — dh/HST . (5. 8)

Density as well as temperature are described by scale heights. The
scale height for the density distribution is Hgp. The scale height for
the temperature distribution is Hg;. Their values are discussed in
Appendix 5. With Equations(5. 7) and (5. 8) the ratio dp,/p, is

a, !

1 .
= —dh|s—+ =— (5.9)
Pa (Hsp Hgy
By introducing the equivalent scale height Hg,
., L (5. 10)

Hye Hyp Hgy 7

11
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and substitution for dh from Equation (5. 7) the change in fireball
volume (5. 6) due to expansion is

dV, = -— —2 2, (5.11)

The other cause for a change in fireball volume is the entrainment of
ambient air. For a mass dM which is entrained into the fireball, the

fireball volume will increase by

dv, = dM/p, ; . (5.12)

The entrained air has the density p, ; after having entered the fire-
ball. The density p, ( is the instantaneous ambient density in case
the entrained air is rapidly accelerated to the fireball's rise speed.
The total change in fireball volume is due to the sum of the two men-
tioned changes in volume

Hy, dp
dM vV Hsp A . (5.13)

The change in the average fireball density is therefore

am | or Hap doy

BF Da s
M ¥, Hge 04

- — 5.14
Pa Pe,t ( )

= pr|l

(This equation is very important and will be used in a different con-
text. )

Substitution of expression (5. 14) into the equation of motion for the
buoyant rise (5. 2) and rearrangement results in

2o D p Hyo\dpy  Copr AV
(”—ﬁ dv‘z( F_(2+ - L Hop) Son_ Zar

o, M dt p,

— l__. ——— —_— —
04 | dt Pe, ¢ v Hse dt M

(5.15)

The mass of air entrained per unit time dM/dt is assumed to be given

by

dM 2
Tt = )\4TTI‘F Pav . (5 16)
The fireball radius is rf, X is the "mass entrainment factor.'" The

expression is based on the intuitive feeling that a certain fraction of
the total mass of ambient air with which the fireball comes into con-
tact in rising a unit distance becomes permanently attached to the

12
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fireball, The "mass entrainment factor" A may be determined by a
comparison of theoretically computed with experimentally measured

rise speeds.

Substitution of the expression (5. 16) for the mass entrainment rate,
of the expressions for the crcss-sectional area and mass of a spheri-
cal fireball of radius r¢ and average density pf, and the assumption
of rapid acceleration of the entrained air to fireball rise speed, so
that Po, 1= Pas results in

(HZ_?F dv Zg(l_E).._(gk_g&

H
-2 s")vz . (5.17)

dt Hsp _YTF HSe

Pa

It is seen that entrainment produces a drag which is proportional to
the square of velocity and inversely proportional to fireball radius
just as the aerodynamic drag. It is also seen that in an isothermal
atmosphere, that is in an atmosphere in which the scale height Hyg;

of temperature is very large, the fireball experiences a slight ac-
celeration proportional to the square of its speed., This acceleration
is due to the decreasing mass of air which the fireball displaces as

it rises. This acceleration decreases from its value in an isothermal
atmosphere for a positive value of Hyg;, that is when the atmospheric
temperature drops with height. Then the fireball expands more rapid-
ly than in an isothermal atmosphere and displaces slightly more am-
bient air than in an isothermal atmosphere. The acceleration increases
from its value in an isothermal atmosphere for negative values of Hg;,
that is when the temperature increases with height. Then the fireball
does not expand as rapidly as in an isothermal atmosphere and dis-
places slightly less air than in an isothermal atmosphere.

6. General Solution of the Equation of Motion of Buoyant Rise

In the differential equation of buoyant rise, only p, is a known function
of height. The latter is obtained as the first integral of rise speed.
The rise speed, the fireball radius and mass and its average density
are unknown. The average fireball density and the fireball mass can
be computed from the differential Equations (5. 14) and (5.16) Equation
(5. 14) contains the average V¢ of the fireball gases. Inorder to obtain
it, the volumes of the various fireball components and their respective
v's have to be known, as it is shown in Appendix 4. Further equations
are needed to complete the analysis.

Energy and mass balance equations for the hot fireball gas and for the
entrained air have to be considered in connection with the condition of

13
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pressure equilibrium between hot fireball gas, entrained masses of
air and the ambient atmosphere, Inthe energy balance equations,

the heat lost by radiation and the particular way in which heat is ex-
changed between the hot fireball gas and the already attached and

the newly entrained air must be taken into account. Temperatures
and densities of the various fireball components as well as parameters
describing the radiative properties of air as a function of temperature
and density will appear in the mathematical expressions.

The fireball radius can be computed from a mass balance equation
which, for the spherically shaped fireball considered here, is

M, ¢
%rf(t) = — +f M, (6. 1)
pF,i(t) 5 Qe(te:t)

Pr,1(t) refers to the spatial average of the hot fireball gas density at
time t. Tp,(t,,t) refers to the spatial average at time t of the density
of air entrained at time t,. The initial mass of the hot fireball gas is

M,.

This concludes the discussion of the equations which have to be solved
simultaneously to obtain the speed, mass and average density of a
buoyantly rising fireball. The assumptions made so far concerned

the particular form of the mass entrainment law, the assumption that
the entrained air is attached to the fireball at its ambient density, the
assumption of a spherical fireball shape and the use of the convention-
al aerodynamic drag relationship. The first mentioned assumption
could be changed readily by using a different relationship for mass en-
trainment, but the latter three assumptions cannot be changed as
easily, The problem is difficult to solve in the nearly complete form.
It is possible to analytically study the behavior of most of the unknown
quantities to a lesser degree of approximation by introducing further
approximations.

14




RM 63TMP-25

DEVELOPMENT OF COMPUTATIONAL PROCEDURES

7. Quasi-Stationary Solution of the Equation of Buoyant Rise

A great simplification results when the equation of buoyant rise is
considered in the quasi-stationary case. It arises when the buoyant

force

2g (1 -0¢/p4) (7.1)

is nearly cancelled by the sum of entrainment induced and aerodynamic

drag
(9h+3/4C) V/re (7. 2)

and the accelerating or decelerating force
(1/Hsp) {1 = Hsp/Ve Hye) v¥ . (7.3)

A negligibly small fireball acceleration will be the result.

Under the assumption that the validity of the present investigation will
be confined to that portion of the rise where quasi-stationary behavior
prevails the rise speed can be expressed by

—_ 1
5 /2
2g r¢ 1—0—
- A
. 9040.75C, - | 1L =0 X -4
' ¢ ( ve Hse | Hsp J

It is seen that the speed will be a function of time mostly because of
the variation with time of fireball radius and the ratio of average
fireball density to ambient air density. The effect of the third term
in the denominator is usually small compared to that of the first two
terms, since buoyantly rising fireballs are always small compared
to a scale height. This is particularly true for fireballs rising in
an atmosphere in which the temperature decreases with altitude,

15
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It is seen that for a small ratio of average fireball density to ambient
air density, which prevails during the initial portion of the rise equa-
tion (7. 4) can be used to evaluate A from experimentally measured
values of rise speed and fireball radius. The drag coefficient must
be evaluated for the proper Reynclds number. Pertinent data are
given in Appendix 2. An approximate expression for the rise speed
is obtained from experimental evidence as

v~2lgrnl? . (7. 5)

It is alsc seen that immediately after the burst when the average
fireball density equals the ambient air density no buoyant accelera-
tion exists. At the end of the expansion phase the average fireball
density has dropped appreciably below the ambient air density and
the buoyant acceleration approaches an upper limit of 2g. By neg-
lecting drag while the fireball accelerates to its quasi-stationary
speed, an initial acceleration time

1
taee 2 (rr/g) fe (7- 6)
is obtained.

The entrainment of ambient air is proportional to rise speed and will
therefore be most significant after this initial period of acceleration.

8. The General Computaticn of the Average Fireball Density

The calculation of the average fireball density is greatly simplified
when energy loss due to radiation can be neglected. The establish-
ment of a relevant criterion is somewhat arbitrary. Since the present
analysis is concerned with average values, the following criterion is
proposed: Radiative energy loss is neglected when radiation decreas-
es the average fireball temperature less rapidly than mass entrain-
ment. Radiative cooling will certainly be important until mass en-
trainment becomes significant at the end of the initial acceleration
phase, but even after this time it may control the radiative fireball
temperature. It is difficult to give general numerical estimates for
the duration of radiative cooling as it has been defined above, taking
expansion and mass entrainment into account. In the following, the
differential equation for the ratio of average fireball density to am-
bient air density will be developed, which is applicable once radiative
energy loss can be neglected,

16




RM 63TMP-25

It follows from Equation (5.14) that for p, ;= 0,

___d(EF/pA) __F)d_M. 1 Liﬂ Eﬁ (8.1)
ol Py oal M ve Hye | 04 ' '

With Equaticn (5. 7) for dp,/p, and Equation (5.16) fer dM/M, Equa-
tion (8. 1) appears as

3x;-:+ —_— . (8. 2)
F

d(Be/ 04)
( Pa

) Ox dk ( 1 HSQ) dh
EF/OA
In this equation the first term on the right-hand side expresses the

change in average fireball density due to mass entrainment, the
second term the change due to adiabatic expansion.

As long as
H Pa H
a2 1}>1.L s") , (8. 3)
Te Pr F HSe

mass entrainment determines the average fireball density., The phase
of the rise where this is true will be referred to as the mass entrain-
ment dominated phase. It is also seen that the average Yy does not,
under these circumstances appear in the differential equation (8. 2).
This equation can therefore be integrated in closed form if one as-
sumes that the fireball radius remains constant over the height of
integration. These simplifications will now be applied.

9. The Computation of the Average Fireball Density where
Mass Entrainment Dominiates

The differential equation for the average fireball density (8. 2) con-
taining the term due to mass entrainment only is

d(or/ 04) ) _@dh . 9.1)

I”EF/OA Tr

This differential equation can easily be integrated if one assumes 1
to be a constant denoted by r¢ i, while integrating from h =0 to

h =1 y. This is well Just1f1ed because it will be seen later that TF
varies only slowly with height. By integrating N times from h = 0
to h = r¢y, keeping rey constant during every step but allowing it
to vary from one step to the next

17
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-aly
(Belen, = 1=[1=(@e/pdole” (9. 2)

is obtained. The initial value, that is the value of 7¢/¢,; at the end of
the radiative expansion phase, when the fireball has already accelera-
ted to its quasi-stationary speed, is (EF/QA)O.

Convenient approximations for Equation (9. 2) are:

for  IN <1, (5/o), = (Be/edy+ N (9. 3)
— — -3\N
for (pF/pA)o < 1: (OF/pA)N =1 —-¢€ ’ (9' 4)
and for 3'N <1 and (0¢/ps), <1, (EF/QA)N = 3N . (9. 5)

The total height hi, v over which integration has been carried out

1S

htot,N = Z Tr . (9. 6)

The value of rf, will be computed in a following section.

The time tyo,v for the fireball to rise to the height hy, y is the
sum of the time intervals to rise the individual step heights r¢

. L (9.7)
t = Z 2 .7
tot,N - 2g Te g (1 = (ee/pa)y) Y2
9\.'{"0. 75 Cd—(l _HSO/-;F,kHSe) rF,k/I‘ISC

The value of the unknown quantity ~; for the kth step appears in this
equation in a term of minor importance only., It is therefore adequate
to use a very approximate value for T y.

10. The Computation of the Fireball Mass when Mass
Entrainment Dominates

The differential equation for mass entrainment (5. 16) can be integrated
in analogy to Equation (9. 1) by integrating N times from h=0 to
h = re i, keeping rf,, constant during every step. Inthis way, the

equation

18
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dM _ 5, (fa) db (10. 1)
M CF . rF,k

goes by substitution with Equation (9. 2) over into
N

3.
nM =j dK + constant . (10. 2)

-3\n

5 1 —[1 - (BF/OA)O]e

Integration of Equation (10. 2) and use of M, for M leads to

(M i} 1-[1 ‘(EF/PA)O]e_a)N ea‘.N
Mo !, (0¢/ 04), ’
(EF/OA)N 3hN
_ L . 10. 3
(Pr/ Pa)o ) | )

Convenient approximations for Equation {10. 3} are:

for
IN K1, M (Pr/p4),+ 3WN
(—M—] = (143N,
Ofw (pr/ Pado
for (10. 4)
(pelon)o < 1, M _ 3l
R (10. 5)
and for
3
3N <1 and (pr/p), <1, (Mﬂ) s = (10. 6)
ohy (QF/QA)O

11. The Computation of the Fireball Radius when Mass
Entrainment Dominates

The ratio of fireball mass to original mass after having risen N in-
stantaneous radii is

- 3
M Pr N Tr N
-I\TJ = Lt (11.1)
°Fy  ProTro
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From this one obtains by simple transformation

— Y3
M ( Pr
T = — —
FyN Mo | 04

1

DA,O
0 (EF/ DA)N

T'r o . (11.2)

>

O,

The substitution of Equations (9. 2) and (10. 3), and the assumption of
an atmospheric density declining with scale height Hy, leads to

htot,N

(An + )
Try = Teo€ 3Hsp . (11.3)

By neglecting the growth of the fireball radius,
N = htct,N/rr,o = Vttot,N

Tr,o . Vior,w
(0 + it
Hsp® 7o (11. 4)

Ten S Tro €

An estimate of the expansion velocity fFJN is obtained by differentia-
tion of Equation (11. 3)

Tf,0 Vttot,N

(" + )
3H Te
o . SO F,0
3H5p e . (11.5)

rF,

TE oy < )+

It is seen that the speed of expansion is smaller than, or at most about
equal to the rise speed v, provided the initial fireball radius is small
compared to a scale height and provided the fireball has risen no more
than several scale heights. It can be shown that fireballs exceeding a
certain size are increasingly more influenced by the "pressure force"
mentioned before, than by buoyancy forces (see Reference 1). The fire-
ball radius when the transition starts to take place is difficult to determine
but is certainly larger than about one-fifth of a scale height. It's most
likely value is five-to seven-tenths of a scale height. Numerical examples
show that the entrainment controlled phase of nuclear-fireball rise rarely
exceeds a few scale heights. For these reasons the assumption of buoy-
ant fireball rise is justified for fireballs of less radius than five-tenths

of a scale height.

In case the scale height changes with altitude, the fireball radius should
be computed from
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4 o)
3Hsp (11.6)

Ten = TNy © f

by using the instantaneous value of the scale height Hs,.

12, The Computation of the Average Fireball Temperature
when Mass Entrainment Dominates™

The condition of pressure equilibrium between the fireball gas and
the ambient atmosphere allows to compute the average fireball tem-
perature after the fireball has risen N instantaneous radii as

p— RA OA,N
TF,N B = TA,N
Re v Or,n

(12.1)

The specific average gas constant of the fireball _}iF,N can be obtained
from Equation (A3. 7) of Appendix 3.

The average temperature of the fireball is defined in Appendix 3.

13. Graphs of (EF/QA)N: (M/MO)N and 1/(-5F/CA)N

It is seen that the expressions for (pf/p4)y and (M/M,), depend only
upon the product of '+ N and the initial conditions., The mentioned
functions can therefore easily be plotted. This is done in Figures

13.1 through 13. 3. Figure 13. 4 gives the factor 1/{0¢/p,)y which is
needed for a determination of the average fireball temperature. It is
good to keep in mind that the abscissa in all these figures is the product
of 1. N, sothat a different mass entrainment factor } implies a dif-
ferent N. Since N is the number of instantaneous radii the fireball has
risen, it is also a measure for the fireball height h,,, . above the burst
height, to which the fireball has ascended in entrainment dominated rise.
By neglecting the growth of the fireball radius

htot,N 2 NTF,o . (13.1)

From

htot’N =v ttot,N s
1
= 2[gre o] 2 teot,n (13.2)

and Equation (10. 4) it follows that

* See Page 49.
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teor,n = Nrro/v

~ N1 o#/2g" . (13. 3)

14, The Computation of the Average Fireball Density when
Adiabatic Expansion Dominates

The differential equation (8. 2) for the average fireball density con-
taining only the term due to adiabatic expansion is

d(E /D) H;
—:F——-A- = - _L a 0 ﬁdh— (14.1)
e/ P4 Ve iSe sp

This differential equation describes the average fireball density once
inequality (8. 3) reverses. This phase of the rise during which the
average fireball density is determined by adiabatic expansion rather
than entrainment, will be referred to as the expansion-dominated
phase of the rise. The value of Vv; will now be close to that of ambient
air, since the fireball has been cooled by entrainment.

Upon integration the ratio of average fireball density to ambient air
density at height h above that height where entrainment ceased to
dominate is found to be

RIRLLIN
VF HSe HSO

(1-

(Pe/opn = (BF/QA)N e (14. 2)

The ratio (pf/p,)y refers to the ratio at the termination of the entrain-
ment-controlled phase of the rise.

The height hyo, o for which the fireball will rise controlled by adiabatic
expansion until its average density is equal to the ambient air density
so that the buoyancy force disappears is

hiot,a = T 1 Hyp Hsp . (14. 3)

The ratio (P¢/p.)y is the ratio of —pF/pA at the end of the entrainment-
dominated phase of the fireball rise. Its value is obtained from ex-
pression (9. 2) for that N for which re,n and (0¢/p,)y assume such
magnitudes that the inequality (8. 3) ceases to be valid.
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In case the scale heights change with altitude the ratio of average fire-
ball density to ambient air density should be computed step by step

from

(pe/0a)n = (Pr/ 0adn-nn © (14. 4)

by using the instantaneous scale heights Hs, and Hg,.

15. The Computation of the Fireball Mass when
Adiabatic Expansion Dominates

The computation of the average fireball density during that portion of
its rise when adiabatic expansion dominates the average fireball density
is based upon the neglect of mass entrainment. As a consequence the
fireball mass remains constant., Its value is obtained from expression
(10. 3) for that N for which r¢y and (p¢/p,)y assume such magnitudes
that the inequality (8. 3) ceases to be valid.

16. The Computation of the Fireball Radius when
Adiabatic Expansion Dominates

The fireball mass is constant during the expansion controlled portion
of the fireball rise. For this reason it follows that

- = . (16.1)

Tr,n BF,h = Tr,N EF,.-V-
By simple transformation
0\ Y2 Oa Ys
(16.2)
h

Oa

=1
Or /s
Teon = Tr,N

N Or Oa,h

With the help of Equations (5. 7) and (14. 2), Equation (16.2) becomes
1 h

SYF HSe
Ten = Tron €

(16. 3)

In this equation r¢  is the fireball radius at height h above that point
where adiabatic expansion started to dominate, r¢y is the fireball
radius where transition from entrainment limited to expansion-con-
trolled rise took place.
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An estimate of the expansion velocity is obtained by differentiation
of Equation ( 16. 3) under the approximation that h > v t,,,.

1 h
3VF HSe

v, (16. 4)

. 1 VFJN
Tep = —— 7
’ 3\/F I—ISe

It is seen that the speed of expansion is small compared to the rise
speed v, provided the fireball radius at the beginning of the expan-
sion-controlled phase is small compared to the scale height Hs,, and
provided the fireball has risen no more than several scale heights Hsg,.
This result is quite similar to that obtained for the expansion speed
during the entrainment-controlled portion of the rise. Therefore the
same reasoning used there also applies here. As a result it can be
concluded that all fireballs of less radius than about one-third of a
scale height rise buoyantly, that is in pressure equilibirum with the
ambient atmosphere.

In case the scale heights change with altitude the fireball radius should
be computed step by step from
1 4Ah
3;-; Hse
Trn = Trn-An ©

(16. 5)

by using the instantaneous scale height Hy, .

17. The Computation of the Average Fireball Temperature
when Adiabatic Expansion Dominates

The computation of the average fireball temperature when adiabatic
expansion dominates proceeds exactly as it does in case entrainment

dominates.

18. Computational Example of Entrainment and
Expansion- Controlled Buoyant Fireball Rise

The following table gives an example for the practical numerical
evaluation of buoyant fireball rise from formulae derived in the

present report.

Initial values of fireball radius rf, and of the ratio of average fire-
ball density to ambient air density (Dr/p4), are assumed. The burst

A

height is taken as 20 km. The mass entrainment parameter ' is

* See Page 49.
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assumed to be 5+ 1072, The fireball radius during the entrainment-
dominated portion of the rise is compuied from Equation (11. 3), the
ratio of average fireball density to ambient air density from Equa-
tion (9. 2), the rise speed from Equation (7. 4). The height to which
the fireball has risen and the time for the rise are computed from
Equations (9. 6) and (9. 7).

The transition from entrainment dominated to expansion-controlled
rise is determined from inequality(8. 3). During the expansion-con-
trolled phase of the rise the fireball radius follows from Equation
(16. 3), the ratio of average fireball density to ambient density from
Equation (14. 2), the rise speed from Equation (7. 4). The equivalent
scale height is quoted in Equation (5. 10). The various scale heights
of interest are listed in Appendix 5. It is also assumed that the scale
heights do not change with altitude. In case it is desired to take
changing scale heights into account, Equation {11. 6) should be used
instead of Equation (11. 3) for the computation of the fireball radii
during entrainment-dominated rise, and Equation (16. 5) instead of
Equation (16. 3) during expansion-dominated rise; Equation (14. 4)
instead of Equation {14. 2) should be used to compute the fireball
density during the expansion-dominated phase.
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Computation of Entrainment and Expansion Control Buoyant Rise.
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= 1.92 12,31 | 0.615¢e%*®=1,00 0 30.3

ler the assumption that the drag coefficients C; remains constant at about 0. 1. This is approximately true for Reynolds numbers ,,“_s‘
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APPENDIX 1

ON THE EQUATION OF MOTION OF
THE BUOYANT RISE

The addition of the term Mp,/2pr to the mass of the fireball in the
equation of motion takes the pressure forces into account which ap-
pear during acceleration of a solid sphere in an infinite mass of
incompressible fluid which is at rest at infinity. The expression

has been taken from H. Lamb's book on Hydrodynamics, Dover, Inc.,

N. Y., 6th edition, p. 124.

The mentioned condition corresponds to the model used in.the present
report where the fireball is assumed to be of spherical shape. In
addition the rise speed is almost always subsonic and thus the assump-~
tion that the ambient atmosphere behaves like an incompressible fluid
is valid. The term Mp,/2pf is just one-half of the ambient air dis-
placed by the firebali. It represents the '"equivalent mass' of air
which must flow around the fireball to let it pass. Its contribution
limits the acceleration which fireballs of very low average density

and therefore very small mass can receive.

Once the acceleration of the fireball stops and a quasi-stationary
behavior of the fireball speed is established, zerodynamic and en-
trainment induced drag and drag due to the change in fireball radius
and thus in the mass of displaced ambient air control the fireball's

speed.
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APPENDIX 2

SUBSONIC DRAG OF A SOLID SPHERE

In Figure AZ2.1 the subsonic drag coefficient of a solid sphere is plotted
as a function of the Reynolds number. The drag coefficient C; allows
to compute the drag force F; acting upon a sphere of cross-sectional
area A moving at speed v through a medium of density p,

Fy = CioiAVe/2 . (A2.1)

The force is due to pressure differentials in the gas surrounding the
sphere and not to frictional forces betwecn the sphere’s surface and
the ambient gas. The pressure differentials are produced by bound-
ary layer separation and by the generation of waves. For some of

the range of Reynolds numbers of interest in fireball rise, the surface
frictional drag is small compared to pressure drag. For Reynolds
numbers larger than 107 to 10° no values for the drag coefficient
could be found. It may be reasonable to assume that the drag coef-
ficient decreases slowly above a Reynold's number of 10° and has a
value somewhere between 1072 and 107!,

The Reynolds number is defined as

2
Ry = = pyrv . (A2.2)
u'V

In Figure A2, 2 the Reynolds number R, for a fireball of radius r in
cm moving at a speed v in cmsec”' in the atmosphere of viscosity
U, ~1.8-10"*gcmsec™® is plotted as a function of height.

The plot for the drag coefficient has been taken from: Hoerner, S. F.,
"Fluid Dynamic Drag, ' published by the author, 1958, Section 3-8.
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APPENDIX 3

THE DEFINITION OF AN AVERAGE
FIREBALL TEMPERATURE*

Average fireball temperature is defined as that temperature which
must prevail in the mixture of gases within the fireball in order to
yield the total translational molecular energy of all its various com-
ponents at their respective temperatures under the assumption of
pressure equilibrium. To illustrate this formally let the subscripts

o and f,t refer to the hot fireball gas, . to the entrained air and

to ambient air. R 1is the specific, » the universal gas constant, M
the mass of gas present, and u the molecular weight. The definition
of average fireball density 0f as the ratio of total mass to total volume

gives

— _ Mg+ M, .
L = M, . _IYI_S . (A3. 1)
Pr, 1 Ps

The equality of translational molecular energy in the mixture of fire-
ball gases at the average fireball temperature T; and in the mixture
of fireball gases at their respective temperatures leads from

M o
&+—5)TFR= —MO—TF1+—M—8—)TeR (A3.2)
Urg M Mr, 4 ’ Me
to
— _ MORLJ. TF,iJr'Me Re Te
T¢ = M, Ry.; ¥ M, R, c (A3. 3)

The conditions of pressure equilibirum

Or, 1 RF,i Tr,i = pe Re Ty = pA Ry Ty (A3.4)

and

See Page 49.
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Pr EF _'fr = 0, Ry Ty (A3.5)

lead to the average fireball gas constant

— M
RF:_MO__RflJr(l-—— 2 )Re . (A3, 6)

The specific gas constant R¢  and the temperature T¢ ; of the origin-
ally hot fireball gas can be obtained from the tables on thermodynamic
properties of air mentioned in Appendix 4. One must follow the iso-
tropic changes of state of the originally hot fireball gas. The value of
the gas constant and of the temperature can be read at that point where
the entropy is equal to its initial value and the pressure equal to the
ambient pressure. The ratio of initial mass M, to total mass (My+ M,)
can be obtained from Equation (10, 3) of the main body of this report.
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APPENDIX 4

DEFINITION OF vy FOR A NON-IDEAL GAS
AND v FOR A MIXTURE OF GASES

Introduction

The internal energy of an ideal gas can be expressed by its state
variables and a constant parameter v. The same Y also appears

as an exponent to the state variables in the adiabatic equation of
state. For a real gas the internal energy can be expressed by its
variables of state and a parameter Yy in complete formal analogy

to the description of an ideal gas. This v is not a constant for

real gases but depends upon their state variables. The adiabatic
equation of state for real gases can only, for small changes of the
state variables, be expressed in formal analogy to the correspond-
ing law for an ideal gas. Even then the parameter vy appearing in
the exponent to the state variables in the expression for the adiabatic
equation of state is not identical with the parameter v appearing in
the expression for the internal energy. In addition, the adiabatic
equation of state for a real gas loses all formal similarily to that
for an ideal gas if large changes of the state variables are considered.
In the following this will be discussed in detail.

On The Definition of v For Ideal and Non-Ideal Gases

The internal energy € per mole of ideal gas at temperature T is

RT
e === A4,
y-1 (A4.1)

The universal gas constant is denoted by R. The internal energy per
unit mass is obtained by dividing the internal energy per mole € by
the molecular weight u

g-__ . RT (A4. 2)

u(y-1) y-1
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The specific gas constant is denoted by R. It is easy to see from
Equation (A4, 1) that y is equal to the ratio of molecular specific
heat at constant pressure and the molecular specific heat at constar\._t
volume if one keeps in mind that the universal gas constant is the dif-
ference between these two magnitudes.

The equation of state for an adiabatic process, that is for a process
in which no energy in the form of heat is added to or removed from
the volume of gas considered, is obtained from the first law of thermo-

dynamics in the form

dE+pdV = 0 . (A4, 3)

This relationship states that the sum of the change in internal energy
dE per unit mass and of the external work vanish, The latter is the
product of pressure p and change of specific volume V. The differ-
ential equation for an adiabatic change of state of an ideal gas is then
obtained by substitution from Equation (A4. 2) into Equation (A4. 3) and
by substituting for p and dp from the gas law

p = RpT . (Ad. 4)

The density is as usual referred to by p. Inthis way the differential
equation for an adiabatic change of state of an ideal gas is obtained

as

L dT . (A4, 5)

0
do = &
R v

Integration and substitution for p and T from the ideal gas law
(A4. 4) yields

1-v

- \Y -V

Tpl '~ = const., Tp = const., pp = const. (A4.6)

The v in Equation (A4.6) is identical with the v in Equations (A4.1)
and (A4. 2).

For an ideal gas, v or the ratio of specific heats is independent of
the state variables and the internal energy varies linearly with tem-
perature. The number of particles per mole of originally present
ideal gas doesnot change as a function of the state variables.

What has been said about the properties of an ideal gas is approxi-
mately true for a real gas provided it is sufficiently far from its
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critical point. This implies that the gas must be at a temperature
well above the critical temperature and at a density well below the
critical density, The main constituents of air, N, and O, can be
described by the y of an ideal diatomic gas of 1.4 for temperatures
at and above room temperature and for densities at or below normal.
With increasing temperature any real gas eventually deviates from
its ideal behavior. Heat energy begins to be transferred into internal
molecular energy. At high enough temperatures the gas particles
will become dissociated and ionized and thus the number of particles
per mole of originally present gas will increase. As a consequence
the internal energy does not vary linearly with temperature, The
change in the number of particles present changes the molecular
weight and therefore the specific gas constant, It is nevertheless use-
ful to retain the definition of the internal energy of a gas per mole as

KT
€ = m—_—i— . (A4.7)

and of the internal energy per unit mass as

Re, (T T
- F:i( f] p) ) (A4. 8)

v(T, p)-1

The function vy, now dependent upon the state variables, cannot any
more be interpreted as the ratio of specific heats, Similarly the
specific gas constant Rr y is a function of the state variables.

In Hilsenrath, T., et al., '"Tables of Thermodynamic Properties of
Air Including Dissociation and Ionization from 1500°K to 15, 000°K, "
Arnold Engineering Development Center, Report TR-59-20, December
1959, the internal energy E* per mole of the original (that is under
normal conditions present) air is given as a function of temperature
and density, The internal energy E* is normalized in the mentioned
reference by dividing it by the product of universal gas constant and
temperature. (The universal gas constant in the mentioned reference
is designated by R rather than by %, as it is done in the present
paper.) The number Z* of moles of gas present relative to one mole
at normal conditions is also listed as a function of temperature and
density. This allows one to compute the specific gas constant R 4

at a temperature T and density p from the specific gas constant R
at normal conditions from

Ry = Z*R . (A4.9)
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At temperature T and density p the internal energy per mole is
according to the definition of v in Equation (A4, 7)

E::: ﬂT .
£z — =z —m—— . A4.10
z*  y(T,p)-1 ( )

From that v can be computed as

E:::/RT + Z::<

T,0) = —or— A4,11
Y( ’ 0) E*/RT ( )
Since the enthalpy H* per mole of original gas is H* = E* + Z*RT,
Equation {A4.11) reduces to

H*/RT
SFRT (A4, 12)

Y(T,p) =

This vy has been computed and is given in graphical form in Figure
A4.1.

To obtain the differential equation for an adiabatic change of state of
a real gas, the internal energy per unit mass of a real gas is ex-
pressed from Equations (A4. 8)and (A4.9) as

Z*RT
E = . A4,13
The gas law assumes the form
p = Z¥RpT . (A4. 14)
The differential equation for an adiabatic change of state for a real

gas is obtained in the same way as for an ideal gas and turns out to
be

) A4.15
= dT ( )

For small changes in temperature and density the functions v and
Z* can be considered as constant and the differential quotients be
approximated by difference quotients. Comparison with Equation
(A4.5) shows that for small changes in temperature and density a
Ve { may be defined, which allows the use of the adiabatic equations
of state (A4. 6) of an ideal in the case of a real gas. This is done by
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replacing v, in the adiabatic equations of state (A4.6), by Ye, 1

3 ; 1 9z* y-l
p_2* 3% o P (A4, 16)
” . :

The v¢ y is different from the v of Equations (A4.7), (A4.8), (A4.10),
(A4,11) and (A4.12). It has been computed and is given in graphical
form in Figure A4. 2. For large changes in the state variables, Equa-
tion (A4, 15) must be integrated. The result cannot be written in a
form analogous to the adiabatic equation of state of an ideal gas.

The v for a Mixture of Gases

It is of interest to express the properties of a mixture of gases in
pressure equilibrium by its average temperature and average density.
The average temperature may be defined as that temperature at which
the translational molecular energy in the mixture of gas equals the
total translational molecular energy of all its components at their re-
spective temperatures, The average density is defined as the ratio

of total mass to total volume. The V; which must be used in the adia-
batic equation of state for a mixture of ideal gases in pressure equi-
librium is obtained by the following considerations. The average
density p is

T (Ma/ 0,) (A4.17)

P =

The M, refers to the mass, the p, to the density of the nth com-
ponent, By differentiation :

= _ = g“(Mn/On) (dpn/on)
(VYT

(A4, 18)

is obtained. By expressing the adiabatic change of state of every
component according to Equation (A4, 5), Equation (A4. 18) becomes

D M, 1 dT,

AR s e A4.19
nZ(Mn/pn)n Pn vn"1 Tn ( )

5 =
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The same change in average density and temperature is experienced
by a hypothetical ideal gas witha v of V¢

v | (A4, 20)

ve-1

dp =

'—]Ilol

Substitution of the adiabatic change in pressure corresponding to the
adiabatic change in temperature

Yo—1 dp, dT, Ve-l dp d

- = and S el (A4, 21)
Yo Pn Th ve P T
transforms Equations (A4.19) and (A4, 20) into
dp = _5__2%Ldp“_ P dp (A4, 22)
Z(Ma/ps) 0 Pu Va P v, P '

The condition of pressure equilibrium between all the components
allows to write Equation (A4. 22) in the form

G=-—P dpg M1 __bd (A4. 23)
?(Mn/pn) P n fn Yn VF P
With
?(Mn/pn) S E:(Mn/g) . (A4, 24)
Equation (A4. 23) assumes the form
2
— M —
_ o] no 1 o]
dp = - L — — = = — A4, 25
M, f e e o, bo el
In this way
- 1
VF =
3 5 Mn 1
L— = A4, 26
;?Mn n On Yn ( )

is obtained. It is interesting that this is an average using the volumes
as the weight factors. This Y; must be used in the adiabatic equation
of state to express average temperature and average density of a mix-
ture of ideal gases in pressure equilibrium. It is seen that not only
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the masses M, of the various components and their respective v,
have to be known, but also their densities p, have to be known so
that V¢ may be computed. Since the p, change during an adiabatic
process, the definition of an average V¢ is only good for small
changes of the state variables. In case the mixture of gas contains
real gases the dorresponding v,'s must be replaced by the approp-
riate v ¢'s.
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APPENDIX 5

SCALE HEIGHTS

The introduction of a scale height Hg; of temperature requires some
explanation. Usually the variation of atmospheric temperature with
altitude is not described by scale heights. For large ranges in alti-
tude such a description would be inconvenient because the atmospheric
temperature varies linearly with altitude. For small changes in alti-
tude one obtains for a temperature gradient dT/dh

_8h
T~%Ah:TeHST=T(1—%% , (A5.1)

and the local scale height is
Hgr = 1 . (A5, 2)

dT/dh

One sees thal a description in terms of a scale height Hg; is valid
as long as the aliitude differences considered are small compared
to Hg;. This is always the case for calculations on fireball rise.
Hence the introduction of a scale height of temperature seems justi-
fied. It is also seen that a positive scale height implies a decrease
of temperature with altitude, while a negative scale height describes

an increase.

Table A5.1 lists the scale heights of atmospheric density Hsp and
atmospheric teraperature Hg;. The equivalent scale height Hg,
given in Equation (5. 10) and the ratio Hsp/Hs, are also tabulated.
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Scale Heights as a Function of Altitude

Table A5, 1.
Altitude Hg,
{(km) (km)
0
7. 80
5
7. 31
11
6. 87
15
6.54
20
6. 40
25
6. 57
30
7.10
35
7. 46
40
8.10
47
8. 36
50
8. 42
53
8.0
60
7. 34
65
6.7
70
5.92
75
&, 37
79
4,98
85
4,98
90
5.16

Hgr
(km)

+44

+39

-73
-9
-85

-91

+ 60
+55
+50
+ 46

+ 42

-50

HSe
(km)

7. 80

9.00

8. 36

7. 04

6. 50

HSD/HSc

(km)

l.

0.

{continued)

03

o AT
.00
.00
.00
. 906
. 910
. 911
. 900
.00
.00
.12
.13
.13
.11
.08
.00

.00

826
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Table A5. 1.

Altitude
(km)
95
100
105
110
115
120
125
130
135
140

145

(continued)

Hsp
(km)

5.

10,

12,

16.

18.

21,

24.

21.

30.

16

. 59

.22

.83

(km)
~50
-55
-60
-15
-20
-25
-30
-35
-40
-45
~50

-55

HSe

(km)

12,

21,

25,

34.

38.

50.

50.

62.

66.

25

.2l

.94

RM 63TMP-25

HSQ/HSe
(km)

0.826
0.900
0.896
0.546
0.477
0.500
0. 467
0.477
0.438
0. 480
0.443

0.454
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APPENDIX 6

HEAT EXCHANGE BETWEEN THE HOT
FIREBALL GAS AND THE ENTRAINED AIR

In the main body of this repert the assumption has been made that no
heat is exchanged between the hot firebali gas and the entrained air.
The calculation of the various physical quantities of interest has then
been carried out by using an average temperature. The true tempera-
ture of the fireball gases are those obtained by adiabatic expansion
from their initial values. The average temperature is defined in Ap-
pendix 3. It is not the temperature which would be achieved after
fireball gas and entrained air have exchanged heat; it is that tempera-
ture which must prevail in the mixture of hot fireball ge_ts and the en-
trained air, which have not exchanged any heat, so that pressure
equilibrium is maintained betwes=n the fireball and the ambient at-

mosphere.

The average temperature so defined would be the temperature after
heat exchange, if both fireball gas and entrained air did have the same
v in the expression for ‘the internal energy per unit mass {Equation
{A4. 2) of Appendix 4), This is not the case because the fireball gas

is ambient air which has been heated to a high temperature and in the
process has deviated {rom its ideal behavior. Dissociation and ioniza-
tion have taken place and the internal energy of the hot gas is much
larger than one would expect from its ideal behavior at low tempera-
tures., If therefore hot fireball gas and entrained air exchange heat
the resulting temperature would be higher than the average tempera-
ture menticned above. As a consequence the fireball density would be
lower, the fireball radius larger.

It is easy to lift the assumpticn that no heat exchange takes place be-
tween the het fireball gas and the entrained air. The computation of
fireball rise becomes somewhat more complicated in the process and
insight into the phenomena taking place is somewhat obscured. The
computation remains similar to that presented in the main body of
this report. The details are as follows.

49




RM 63TMP-25

The calculation starts by assuming a certain initial ratio (EF/pA)O of
fireball density to ambient air density. From this and Equation (10, 3)
of the main body of this report the mass M; of the firebal! at the end
of the first step can be computed, The first step is the time it takes
the fireball to rise a height equal to its initial radius, At the end of
the step the hot fireball gas and the entrained air are assumed to com-
pletely exchange heat., The process occurs at constant pressure. For
this reason the thermodynamic potential which is conserved is the
enthalpy. This can be expressed by

H, . (A6.1)

The enthalpy per unit mass is denoted by H, the mass of air by M.
The subscript F O refers to the initial fireball mass, Ff,1 to the fire-
ball mass at the end of the first step and 4 to the ambient air.

It is therefore easy to compute the enthalpy per unit mass H;; after
heat exchange. It is also known at what pressure the fireball is at the
end of the first step; this pressure is the ambient pressure encountered
at a height equal to the initial fireball radius above the initial height of
the fireball center. The two variables of state, enthalpy and pressure,
can be used to determine temperature and density of the fireball gas
after mixing by using tables of the thermodynamic properties of air.

The density so found can be used to compute the fireball radius after
heat exchange. It also sets the initial condition for the ratio of aver-
age fireball density to ambient air density in the calculation of the
second step. In thisway buoyant fireball rise can be computed step
by step, allowing complete heat exchange to occur. The transition to
expansion controlled rise is determined from inequality (8. 3) of the
main body of this report, by using the values of fireball density and
fireball radius obtained by taking heat exchange into account.

Consideration of the case where incomplete or delayed exchange of
heat is assumed proceeds in an analogous manner. The details are

left to the reader.

T. Hilsenrath's, et al., tables of thermodynamic properties of air
quoted in Appendix 4 are very useful for the present purpose. From
these tables the y for the determination of internal energy, the

Yo = Y for the adiabatic equation of state, the sound speed C and
the enthalpy H per unit mass have been computed. The tables them-
selves, in addition to the magnitudes mentioned, have been listed
and can be supplied upon request.
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